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An equation derived previously 14 for adsorption from binary liquid mixtures 
composed of molecules of different sizes on heterogeneous solids has been 
reexamined. Verification of this equation by means of numerical simulation 
showed its applicability for describing the liquid adsorption onto weakly and 
strongly heterogeneous surfaces. 
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Eine Isothermen~Gleichung Jfir die Adsorption aus biniiren fliissigen Gemischen an 
heterogenen Oberfliichen fester K6rper unter Beriicksichtigung der Differenzen in 

den MolekiilgrOJ3en der Komponenten und ihre numerische Verifikation 

Es wurde die friiher 14 abgeleitete Isothermen-Gleichung der Adsorption aus 
bin~iren fliissigen Gemischen an heterogenen Oberfl~ichen fester K6rper abermals 
untersucht. Durch Computersimulation wurde gezeigt, dab diese Gleichung den 
obengenannten Prozeg, der sich sowohl an schwach wie auch an stark heterogenen 
Oberfl/ichen vollzieht, gut beschreibt. 

Introduction 
The importance of surface heterogeneity in liquid adsorption onto 

solids has been widely studied in the recent years and several papers have 
been published on this subject 1--12 Review 1~ deals with both monolayer 
as well as multilayer models of  the adsorbed phase and presents a first 
comprehensive survey of the achievements in this field. Simultaneously, 
review ~3 reveals little progress concerning a theoretical description of the 
adsorption on real solid surfaces from solutions consisting of  molecules of 
different molecular sizes. On the other hand, the majority adsorption 
systems of  a great practical importance include such type of  solutions. 
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In the previous paper of this series 14 an equation for the adsorption 
isotherm has been proposed on the basis of the kinetic treatment of liquid 
adsorption. Moreover, in this equation, which was formulated in terms of 
the monolayer model of surface phase, the difference of molecular sizes of 
admolecules and energetic heterogeneity of the solid was taken into 
account. The influence of the above factors and also interactions between 
molecules on the shape of the excess adsorption isotherms and deviations 
of the adsorption systems from ideal behaviour has been discussed. 

Quite recently Rudzihski etal. 15, by extending the condensation 
approximation (CA) method which was firstly adopted to the theory of 
liquid adsorption on heterogeneous surfaces by O~cik etal. 16'17 and 
Dqbrowski et al. 2, were able to derive an analytical equation like the 
mathematical form of the equation proposed in 14. In contrast to the 
equation proposed in 14 Rudzihski's isotherm cannot be, in any way, 
rearranged into the well known Everett equation describing liquid 
adsorption process onto homogeneous surfaces 1~. This statement is 
connected with the fact that the CA method gives reasonable results for 
adsorption on very strongly heterogeneous surfaces only 2' 12 and then 
Rudzihski's expression may be useful. However, the comparison of the 
above mentioned two equations will be subject of a future publication ~9. 
The present paper reexamines our general equation derived previously 14 
and proves its applicability for describing the liquid adsorption onto 
weakly and strongly heterogeneous solids. To this end a computer 
simulation approach was used. For simplicity, our considerations deal 
with the IBP model (ideal behaviour in both adsorbed and bulk phases) of 
adsorption system. According to Ref. 14 in such case the kind of 
topography of adsorption sites is meaningless. Since the adsorption from 
solutions consisting of species of different molecular sizes is studied, the 
volume fractions of components in both phases will be handled, instead of 
the mole fractions. 

Method 

General Considerations 

One of the most fundamental equations dealing with the liquid adsorption on 
heterogeneous surfaces, characterized by a continuous energy distribution, has the 
following forml3: 

Ox){ = ~ q?{(gl2, ~{)Z(gl2)d~;12 (1) 
n 

where 812 is the difference of the adsorption energies of both components; O{ 
denotes the average of the volume fractions of the component 1, ~0{, reffering to the 
homogeneous surface patches having the difference of adsorption energies equal 
to g12 and f~ is the interval of possible changes in gl2; however, q5{ is the volume 
fraction of the component 1 in the bulk phase. 

To solve Eq. (1) the known method of Stieltjes transform is usually applied 13. 
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Unfortunately,  this method cannot  be employed in the case of adsorption on 
heterogeneous surfaces with solutions composed of molecules having different 
sizes, because the local isotherm (p~ has the form of a complex function ~8. 

Let us suppose now, according to 54 that a heterogeneous surface of the solid 
consists of M adsorption sites distributed among N surface patches, where 

Jv 
additionally M = ~ M k and M k is the number  of adsorption sites of the k-th type. 

k ~ l  

Then, instead of Eq. (1) we can write: 

N 

q'~ = Y. fK<,~  (2) 
k = l  

wherefk = M f f M  denotes the fraction of adsorption sites distributed on the k-th 
homogeneous patch and connected with the value e12 4. The constant, which 
governs the equilibrium state on this patch has the following form 14, ~8: 

= (3) 

where ~ = 1--q)~ and cp ~ = ' 2,k 1 -  (Pl,k. However, 

K k = exp (e,2,k/R7) (4) 

and 

e12,k = r q,k--e2,1, (5) 

Parameter el, k (i = 1, 2) denotes an adsorption energy of the component  i on the k- 
th patch. The symbol r appearing in Eq. (3) is the ratio of the cross-sectional areas 
of 2-nd and 1-st components,  i.e., r = wfw~. 

Basing on Eq. (2) and using the kinetic approach described in 14 the following 
equation for the liquid adsorption on real solid surfaces has been obtained: 

( ,9  r/c ~ 
K" = exp (512/RT) = (,~gv ~ (,~)~ (6) 

where R and ~12 appear as some averages of the constants K k and energies ei2 k 
respectively referring to the whole heterogeneous solid surface TM, however, 'c 
denotes the heterogeneity parameter. This parameter may be expressed as 
follows s: 

c =  1/(c1+ 1) (7) 

where q ~> 0 is a free parameter. So, c e (0, 1) and it characterizes the shape of a 
Gaussian-like distribution 14. For c = I Eq. (6) produces the well-known Everett's 
equation dealing with adsorption on homogeneous surfaces from solutions 
composed of molecules having different sizes 18, but for r = 1 Eq. (6) may be 
rearranged to give the exact, analytical solution of Eq. (1) 2. 
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Theory 

Let suppose now the following, typical Gaussian distribution of the variable 
g12 ~ r g l - - g 2 ;  

1 I (g12--8~2)2~ 
Z (e19 - A x/z--2-- exp - -  2 k 2 d (8) 

where A is the parameter characterizing the width of the distribution in question, 
but e~2 corresponds to the value of 812 for which the function Z(s~2) reaches a 
maximum. When the parameter A tends to zero, the function Z(Sl2 ) becomes the 
Dirae delta distribution 5(q2---e~2 ). In this instance we have to deal with a 
homogeneous surface characterized by the adsorption energy e12 = e~2. Function 
Z(q2) expressed by Eq. (8) fulfils the normalization condition: 

+o9 

X(S12) ds12 = 1 (9) 
--oo 

Fig. 1 shows the normalized functions of the energy distribution relating to Eq. (8), 
evaluated for e~2 = 0 and different values of A. For comparative purposes, all 
functions presented in this graph have been drawn on an identical scale. It follows 
from Fig. 1 that the function Z(e12 ) corresponding to A = 0.25 (curve a) 
approximates the Dirac delta distribution and there is an inconsiderable interval of 
changes ex2(--0.65kcal, +0.65kcal}. So, we can state that in this case the 
function X (e12) characterizes a nearly homogeneous surface of the solid. However, 
the function corresponding to A = 2 (curve d) is extended through a wide range of 
e12 (--5.5 kcal, + 5.5 kcal} and characterizes a highly energetically heterogeneous 
surface. Bearing in mind Eq. (2) we have to replace the continuous distribution (8) 
by the discreet one. Recently, it has been proved by Czarniecki and Jaroniec 2° that 
such replacement is a sufficient rigorous approximation, in case that an interval of 
significant changes of the variable e12 is taken into account. For the discreet 
distribution the normalization condition (9) may be rewritten in the following 
form: 

N 

A = 1 0 o )  
k = l  

with 
N 

fk = ;g(elZ,k)/~. Z(e12,k) (11) 
k = l  

One must stress that the meaning of the parameterfk given by Eq. (11) is equivalent 
to that appearing in Eq. (2). 

With a view to our further considerations, in Fig. 2 the function (8) evaluated 
for A = 1 and e~2 = 0 is presented. For this instance the interval of significant 
quantities of e12 is: (--3.2kcal,  + 3.2kcal} and that was divided into sixteen 
mutually-equal subintervals, i.e., the upper index appearing in the sum (10) is 
equal to N = 17. 

To demonstrate the utility of Eq. (6) the numerical calculations have been 
performed according to the scheme described below. 
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Fig. 1. Normal ized distr ibution functions (8) calculated for various values of  A and 
~2 = 0: A = 0.25 (a); A = 0.5 (b); A = l (c); iX = 2 (at) 

1. The calculation of  the volume fractions @~ and q)t 2 = 1 - -  qs~ by means of  the 
following relation t4: 

• - ( 1 2 )  
x~ + r(1 - - x ~ )  

for given values of  r I and x~ where Q = r I. 

2. The calculation of  the equilibrium constants Kk, according to Eq. (4) 
describing the adsorpt ion onto homogeneous patches connected with the energies 
el:,k, estimated for a given distr ibution function X(s12 ) (see also Fig. 2). 

3. The calculation of  the volume fraction ~ by means of  Eq. (2). To this end 
the fraction of  adsorpt ion sites distr ibuted onto the k-th homogeneous patch 

11 Monatshefte  fiir Chemie, Vol. 117 /2  
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Fig. 2. Schema illustrating the numerical procedure used for verification of Eq. (6) 

characterized by the energy e12,k, was obtained according to Eq. (11). However, the 
volume fraction q0~ x corresponding to the adsorption on this same, homogeneous 
k-th patch, was evaluated by means of the numerical solution of Eq. (3), where 
respective values K k evaluated according to Eq. (4) were used. 

4. The recalculation of the volume fractions (I)~ to the mole fractions X]~ using 
the expression 14: 

rq~ 
- ( 1 3 )  

rO~ + (1--q)~) 

and finally, the calculation of the excess isotherm N~ = N~ (x~) describing the 
adsorption process on the heterogeneous surface, according to the following 
formulal4: 

N~ = (14) 
r + X ~ ( 1 - - r )  

The simulated isotherms O~ = O~ (O]) and N~ = N~ (x]) will be treated by us as 
"experimental ones". 

5. The approximation of the experimental function qS~ = ~ (~]) using the 
linear form of Eq. (6): 

1 --O~ 1 --¢', 
In = cln(K') -1 + cln (15) 

( ,1)9  r ( o ~ )  ~ 
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Fig. 3. Linear  dependence, Eq. (15), examined for the simulated experimental data 
obtained by means of  Eq. (2) for e~2 = 0; other adsorpt ion parameters  are equal to: 
A = 1, r I = 1.4 [solid line (a) with filled circles] ; A = 1, r 1 = 0.6 [dashed line (b) 
with open circles]; A = 0.25, r 1 = 1.4 [filled circles and line (c)] ; A = 0.25, r 1 = 0.6 

[open circles and line (c)] 

6. The evaluation of theoretical excess isotherms using Eqs. (6), (12)-(15). To 
solve Eq. (6), the parameters  c and K" obtained on the basis of Eq. (15) were 
applied. 

7. The calculation of  the sum of  square deviations (SD) defined by the 
following equation: 

I 
[ N e, ~xp _ _  N~, theorl 2 (16) SD = ~ li li 

i=1 

whe re /deno t e s  the total  number  of  the experimental  points, but  N~'i e~p and N~,/he°" 
denote experimental and theoretical values of  the excess isotherms, respectively. 

While performing the above described numerical calculations it was admit ted 
that  x~ runs through the following values: {0.05, 0 .15, . . . ,  0.95}, i. e., the upper  
i n d e x / i n  Eq. (16) is: I = 10. Simultaneously, the parameter  r~ = r l runs through 
the values: {0.6, 0.7 . . . .  ,1.4}. Other parameters  necessary to carry out  our model  
studies were admit ted as follows: N = 17 [see Eq. (2)] and R T  = 0.6 kcal /mol rsee 
Eq. (4)]. 

Results and Discussion 

In  F ig .  3 the  l i nea r  d e p e n d e n c e s ,  ln[ (1  _ _ ~ ) / ( ~ ) r ]  vs. l n [ ( 1 - - d p l l )  / 
(qb~l)'] e v a l u a t e d  a c c o r d i n g  to  Eq.  (15) fo r  8~2 = 0 a n d  A = 0.25 ( s t r a igh t  

1l* 
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line c) and A = 1 (straight lines a and b) are presented. For both values of 
A, the experimental points were obtained by means of Eq. (2) for rl = 0.6 
(open circles) and r 1 = 1.4 (filled circles). It follows from Fig. 3 that Eq. 
(15), being the linear form of the examined expression (6), gives a good 
representation of the simulated adsorption data both for A = 0.25 (a small 
surface heterogeneity) and for A = 1 (a considerable surface heterogene- 
ity) and for A = 1 (a considerable surface heterogeneity) (see also Fig. 1). 
However, in the former case the parameter c, determined directly by the 
slope of the straight lines, appears to be practically independent upon the 
difference in the molecular sizes of both components (c = 0.997 for r 1 
= 0.6, and c -- 0.998 for r I = 1.4), but in the last case this parameter is 
slightly dependent on r (c = 0.643 for rl = 0.6 and c = 0.775 for rl = 1.4). 
In other words, for adsorption onto heterogeneous surfaces, from 
solutions composed of molecules having different sizes, the parameter r 
modifies the true value of the heterogeneity parameter c. At first sight it is 
a rather surprising conclusion, because irrespective of changes in r, the 
parameter c characterizing via A = const, the shape of the Gaussian 
distribution should be constant, too. However, such result is in ac- 
cordance with the model studies performed on the basis of Eq. (6) and 
presented in Ref. 14 (see Fig. 1, Ref. 14). Therefore careful attention has to 
be applied using Eq. (6) for describing experimental adsorption data and 
suitable corrections in relation to the parameter c must be taken into 
account (see below). On the other hand, when adsorption takes place on 
slightly heterogeneous surfaces, then the influence of  r onto c may be 
neglected 21. It is interesting that the equilibrium constant g~, similar to c, is 
practically independent on r when e tends to unity e. g., A = 0.25, c -~ 1, K" 
= 1.008 for rl --- 0.6 and g ~- 0.996 for rl = 1.4. However, the differences 
in k increase simultaneously with r when the parameter A increases. 
Above deductions are strongly supported by the results showed in Fig. 4. 
In the part B of this figure the linear dependence (15) applied for 
describing experimental points simulated by means of  Eq. (2) for A = 2 
are showed, but in part A the suitable experimental and theoretical excess 
adsorption isotherms are compared. The labeling is as in Fig. 3, but here 
the dotted line with crossed circles denotes the situation when r = 1. The 
parameters c, R and SD corresponding to results presented in Figs. 3-4 are 
summarized in Table 1. It follows from Table 1 that irrespective to changes 
in A, the values o fg ' f0 r  r l = 1 correspond to ~2 = 0 for which the function 
(8) reaches a maximum, i. e., K "~ 1. We shall illustrate it as follows. For rl 
= 1, Eq. (6) may be rearranged to give: 

ln K = [ (e l - -ez) /RT]  = [~'~2/RT] (17) 

Because the distribution function (8) is symmetric, the value of ~T2 is the 
average difference of adsorption energies of both components for which 
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Fig. 4. Simulated excess adsorption isotherms (A) and corresponding functions 
(15) (B) evaluated for e~2 = 0 and A = 2. Circles denote the experimental points, 
but the lines denote theoretical functions; other adsorption parameters are equal 
to: r 1 = 1.4 [solid line (a) with filled circles]; r l = 1 [dotted line (b) with crossed 

circles]; r 1 = 0.6 [dashed line (c) with open circles] 

Table 1. Adsorption parameters of  Eq. (6) calculated for e~2 = 0 and A = 0.25, 1, 2 

A r I = r - I  c K SD No. of 
figures 

0.6 0.978 1.009 0.00009 
0.25 1.0 0.983 1 , 0 0 1  0.000006 3 

1.4 0.988 0.998 0.00004 

0.6 0.643 1.141 0.0002 
1 1.0 0.679 1.001 0.00001 3 

1.4 0.775 0.935 0.0004 

0.6 0.286 1.821 0.0004 
2 1.0 0.345 1.000 0.00003 4 

!.4 0.422 0.715 0.0005 

the Gaussian dis t r ibu t ion  reaches a m a x i m u m ,  i .e. ,  e~2 = 8~2  = 0 and  
/~ -~ 1. Moreover ,  such a resul t  indicates  the accuracy  o f  the p rocedure  
deal ing with the subs t i tu t ion  o f  the in tegra l  (1) by  the sum (2). 

Let  us not ice  tha t  Eq. (6) for  e = 1 and  r = 1 becomes  the s imple fo rm 
of  Everett 's equa t ion  22 which for  K" = K = 1 predic ts  a zero value  for  the 
adso rp t i on  excesses in the whole  concen t ra t ion  interval .  As  fol lows f rom 
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Fig. 4 and Refs. 2,H, during the liquid adsorption onto heterogeneous 
surfaces the excesses are different from zero even for K ~ = 1 and r = 1. This 
same inference is kept during the adsorption onto homogeneous surfaces 
w h e n c e -  1 b u t r ¢  119. 

Summing up the results obtained, we can state that our examined Eq. 
(6) gives good representation of experimental data in the wide range of 
changes in surface heterogeneity of  solids, however the parameter  c 

2- 

1- 

0,2 0,4 0,6 0,8 1,0 

Fig. 5. Dependence Avs. c, obtained by means of Eqs. (2) and (15) for ~2 = 0; 
other adsorption parameters are equal to: r 1 = 1.4 (solid line with filled circles); 
q = 1 (dotted line with crossed circles); r 1 = 0.6 (dashed line with open circles) 

obtained by means of this formula depends on r when A increases. The 
true value of c many be reckoned by using the diagrams A vs. c similar to 
that presented in Fig. 5. This figure confirms our previous statements 14 in 
relation to Eq. (6), namely: 

1. the equation in question corresponds to a Gaussian distribution of 
the variable e12, 

2. equation (6) predicts that the heterogeneity parameter  c - -  
c (a )  ~ (0, 1 ) 

3. for c = 1 the parameter  A = 0 and distribution (8) becomes equal to 
the Dirac delta function. 

Simultaneously, it appears from Fig. 5, that Eq. (6) gives in sufficient 
results for A ) 2.5 for which c < 0.3, because the diagram Avs. c is little 
sensitive on alternation in A. Fortunately, parameters c characterizing 
most  of  the experimental systems are greater than c = 0.5 (Refs. 3,23). 
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To evaluate  the distr ibution funct ion (8) character izing any experi- 
menta l  system, a knowledge o f  the pa rame te r  ~2 is necessary. The  
procedure  to solve this p rob lem and an appl icat ion of  Eq. (6) for  analysing 
real exper imenta l  systems and some other  p rob lems  dealing with liquid 
adsorp t ion  f rom solutions composed  o f  molecules having different sizes 
will be the subject o f  a fur ther  communica t ion  19. 

Note added in proof: 

Model calculations presented in Refs. 14' 19 were carried out for r 1 = r - l .  
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